DAYA BAY AD LIQUIDS

ATTENUATION LENGTHS AND PHYSICS IMPACT

JOHNNY GOETT

RPI

NEUTRINO OSCILLATIONS

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta} \sin \theta_{13} \\ 0 & 1 & 0 \\ e^{-i\delta} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{23} & \sin \theta_{23} & 0 \\ -\sin \theta_{23} & \cos \theta_{23} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$P(
u_lpha
ightarrow
u_eta) = |\sum_i U_{lpha i}^* e^{-irac{\Delta m_i^2 x}{2 ext{E}}} U_{eta i}|^2$$

NEUTRINO OSCILLATIONS

$$|
u_{lpha}> = \sum_{i} U_{lpha i}^{*} |
u_{i}> \qquad \qquad U = egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
 ATMOSPHERIC

ATMOSPHERIC

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta} \sin \theta_{13} \\ 0 & 1 & 0 \\ e^{-i\delta} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{23} & \sin \theta_{23} & 0 \\ -\sin \theta_{23} & \cos \theta_{23} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\Delta M_{\text{atm}}^2 = 2.43 \pm 0.13 \text{x} 10^{-3} \text{eV}^2, 68\% \text{C.L.}$ $\sin^2(2\theta) > 0.90.90\% \text{C.L.}$ $\sin^2(2\theta) > 0.90, 90\% \text{ C.L.}$

ADAMSON, 2008

$$|\nu_{\alpha}> = \sum_{i} U_{\alpha i}^{*} |\nu_{i}> \qquad U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta}\sin\theta_{13} \\ 0 & 1 & 0 \\ e^{-i\delta}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{23} & \sin\theta_{23} & 0 \\ -\sin\theta_{23} & \cos\theta_{23} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \frac{100}{80} \frac{1}{80} \frac{1}{80}$$

ABE, 2008

NEUTRINO OSCILLATIONS

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta} \sin \theta_{13} \\ 0 & 1 & 0 \\ e^{-i\delta} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{23} & \sin \theta_{23} & 0 \\ -\sin \theta_{23} & \cos \theta_{23} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\sin^2(2\theta_{13}) \le 0.1$$

APOLLONIO,2003

